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a b s t r a c t

A holonomic mechanical system with variable masses and cyclic coordinates is considered. Such a system
can have generalized steady motions in which the positional coordinates are constant and the cyclic
velocities under the action of reactive forces vary according to a given law. Sufficient Routh-Rumyantsev-
type conditions for the stability of such motions are determined. The problem of stabilizing a given
translational-rotational motion of a symmetric satellite in which its centre of mass moves in a circular
orbit and the satellite executes rotational motion about its axis of symmetry is solved.

© 2009 Elsevier Ltd. All rights reserved.

The problem of the stability and stabilization of the steady motions of mechanical systems is of both great theoretical interest and
considerable practical importance.1–6 The same problem in the unsteady formulation has been investigated to a much lesser extent.
Results are presented below which extend the results obtained in previous papers.7–12

1. Formulation of the problem

Consider a mechanical system with variable masses m� = m�(t) (� = 1, 2, . . ., N) under time-varying holonomic constraints such that the
position of the system is determined by n independent generalized coordinates q1, q2, . . ., qn, and its kinetic energy has the form

The prime denotes transposition.
We shall assume that the masses of the points of the system m� = m�(t) (� = 1, 2, . . ., N) are bounded and do not vanish. Hence, in

a non-degenerate system of coordinates, the component T2 of the kinetic energy is a positive-definite quadratic form with respect to
q̇1, q̇2, . . . , q̇n.

The equations of motion of this system can be written in the form13

(1.1)

where d0/dt is a derivative for fixed masses, Q = Q(t, q, q̇) is the resultant of the generalized active forces, and � = �(t, q, q̇) is the resultant
of the generalized reactive forces caused by the separation and joining of particles to material points of the system which are varying in
mass and their motion within these points. When there is no relative motion of the particles within the material points of the system (the
Meshcherskii case), the reactive force has the form13,14
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where dm1k/dt and dm2k/dt are the intensities of the joining and separation of the masses for the k-th point respectively, V̄
2
1k and V̄

2
2k are

their relative velocities and r̄k is the radius vector of the k-th point.
We will assume that the kinetic energy of the system can be represented in the form

(1.2)

Here,

The coefficient g depends solely on the varying masses of the points of the system, and the coefficients A2, A3, B2 are independent of
these masses.

We shall also assume that the forces Q and � are independent of the coordinate s, where Q = (Qr, Qs)′, Qs ≡ 0, � = (�r, �s)′, the coordinates
r can be called positional coordinates and the coordinates s pseudocyclic coordinates.6 In the case of system (1.2), Eqs (1.1) take the form

(1.3)

We now introduce new impulse-type variables corresponding to the cyclic coordinates

(1.4)

defining the variables

(1.5)

in terms of them by virtue of the fact that det A3 /= 0.
We introduce the Routh function using the formula

substituting ṡ from equality (1.5). We have the following expression

The equations of motion with respect to the positional coordinates (1.3) in terms of the Routh function are reduced to the form

(1.6)

(1.7)

We now suppose that the action of the active and reactive forces and the effect of the unsteady character of the constraints are such that
the representation

(1.8)
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holds, where � is a certain scalar function of the potential energy type and � is a function of the dissipative-accelerating type. With these
assumptions, in accordance with relations (1.4) and (1.6)–(1.8), the equations of motion (1.3) reduce to the equations

(1.9)

where W(t, m(t), r, c) = � − R0 is a scalar function of the reduced potential energy type.6

We shall assume that the functions appearing in Eqs (1.9) are bounded and continuous, and that they have bounded continuous
derivatives with respect to (r, ṙ, p) in the domain R+ × �0, where

It therefore follows that Eqs (1.9) are precompact and that a family of analogous limiting systems can be matched to them.7–9

Suppose the second set of equations (1.9), when �s = �s(t) = g(m(t))p0(t), has a bounded solution

Here, ∂W(t, m(t), r, p0(t))/∂r = 0, if r = 0. System (1.9) will then have a generalized steady motion

(1.10)

in which the cyclic velocities ṡ0(t) are variable functions in the general case.

2. A theorem on stabilization

We will now consider the problem of stabilizing the generalized steady motion (1.10) by the action of active and reactive forces that are
reducible to the form (1.8).

For convenience, a bounded, continuous function such that a number T > 0 is found for each L > 0 and for which the inequality

(2.1)

is satisfied for any t0 ≥ 0 will be denoted by �: R+ → R.

Theorem 1. We will assume that:

1) the function

is definite-positive and allows of an infinitesimal higher bound with respect to r;
2) the generalized steady motion (1.10) is isolated when p = p0(t) in such a manner that

(2.2)

3) the action of the active and reactive forces is such that the inequalities

(2.3)

(2.4)

are satisfied for certain bounded continuous functions �1, �2: R+ → R for all (t, q, q̇) ∈ R+ × �0 and, at the same time, the inequality
�∗

1(t) /≡ �∗
2(t) holds for any functions �∗

1(t) and �∗
2(t) which pass in the limit to �1(t) and �2(t).
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Then, when �s ≡ �s
0(t), the generalized steady motion (1.10) is uniformly stable and uniformly asymptotically stable with respect to

(ṙ, r) with respect to motions for which p ≡ p0(t). If, however, when �s
/≡ �s

0(t),

(2.5)

then the steady motion (1.10) is uniformly asymptotically stable with respect to (ṙ, r, p − p0(t)).

Proof. We will use the stability theorem in Ref. 10. For the function V1 = ||p − p0(t)||2, we find V̇1 ≡ 0 or, in the case of condition (2.5),

According to inequality (2.1), it is sufficient for deriving of the result10 that the uniform asymptotic stability of the motion (1.10) with respect
to motions for which V1 ≡ 0 or p ≡ p0(t) should hold. This is established on the basis of the function V2 = R2 + W1 that is positive-definite
with respect to (ṙ, r). By virtue of Eqs (1.9), for its derivative we find from condition (2.3)

It follows from inequality (2.4) that the solution u = 0 of the comparison equation u̇ = �(t)u is uniformly stable. The function V∗
3 which

passes in the limit to V3 is analogous and, by virtue of the inequality �∗
1 /≡ �∗

2, the set

is {R∗
2 = 0, �∗(t) = �∗

2(t)} or {W∗ = 0, �∗(t) = �∗
1(t)}.

According to condition 1) of the theorem, it does not contain motions corresponding to the value p = p0(t), apart from ṙ = r = 0. Using
well-known theorems (Ref. 10, and Theorem 3.4), we obtain the required result.

Remark. The condition �∗
1(t) /≡ �∗

2(t) is necessarily satisfied if, for a certain �0 > 0, a sequence

exists such that ||�2(t)| − |�1(t)|| ≥ �0 for t ∈ [tn, tn + t0].

3. The problem of stabilizing the motion of a satellite

We will now consider the problem of stabilizing the translational-rotational motion of a satellite in a gravitational field under the action
of reactive forces, assuming that the equations of motion of the centre of mass are separated from the equations of motion of the satellite
with respect to the centre of mass.

We will take the cylindrical coordinates r, ϕ, z as the variables describing the motion of the centre of mass.14 The equations of motion
in the variables r, v� = r�̇, z have the form

(3.1)

where � is the gravitational constant, m = m(t) is the variable mass of the satellite and � = (�r, ��, �z)′ is the vector of the reactive forces.
When � = 0, Eq. (3.1) has the solution

(3.2)

which corresponds to the motion of the centre of mass of the satellite in a circular orbit.
We now set up the equations of the perturbed motion with Eqs (3.1), assuming that x = r − r0, y = v� − v�0. We obtain

(3.3)
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We will assume that the reactive forces, as stabilizing forces, are defined by the relations

(3.4)

The Lyapunov function

(3.5)

is positive-definite with respect to ẋ, ż, y, x, z. By virtue of Eqs (3.3), its derivative is

Hence, the steady motion of the satellite (3.2), under the action of reactive forces of the form (3.4), is stable with respect to ẋ, ż, y, x, z. It
may be found that the set {y = 0} does not contain the motions of system (3.3) except for the motion (3.2) and the set {ẋ = 0} only contains
the motions

that is, the motions of the satellite in a circular orbit corresponding to the perturbed motions v�0 + y0. Then, applying a well-known
theorem,15 we find that, in the case of the condition �3(t) ≥ �0 > 0 in the sequence of intervals

the motion (3.2) is uniformly asymptotically stable and, if �3(t) = 0, �2(t) ≥ �0 > 0, then the motion (3.2) is asymptotically stable and each
perturbed motion of the satellite converges indefinitely to motion in a circular orbit in the z = 0 plane.

At the same time, the explicit expression (3.5) for the Lyapunov function enables us to determine the attraction domain.
Hence, we shall assume that the centre of mass O of the satellite moves uniformly (	0 = �̇0 = const) in a circular orbit. We will now

consider the motion of a symmetric satellite about its centre of mass under the action of the moment of the gravitational forces3,14,16 and
the reactive moment. We will assume that the change in the mass of the satellite does not lead to a change in the directions of the principal
central axes of inertia Ox1, Ox2, Ox3 with moments of inertia

The rotational motion of the satellite with respect to the orbital system of coordinates, in which the Oz axis is directed along the radius
vector of the centre of mass, the Ox axis is directed along the normal to the orbital plane and the Oy axis is directed along the transversals,
is determined by the Eulerian angles 
, � and � which are introduced in the usual manner.3,14

The kinetic energy of the rotational motion of the satellite and the potential energy of the Newtonian forces are defined by the equalities

We will now show that the moments of the reactive forces in projections on to the axes of system Ox1x2x3 in the form

(3.6)

where 	̄1 and 	̄2 are the projections of the relative velocity of the satellite on to the Ox1 and Ox2 axes and 	3 is the projection of the
absolute angular velocity on to the Ox3 axis, ensure stabilization of the motion in which the satellite executes a specified unsteady rotation
about the Ox3 axis, which maintains an unchanged position in the Oxyz system.

Correspondingly, for the generalized forces, we have

The equation of motion of the satellite with respect to the coordinate � has the form
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We now define the Routh function

By carrying out the necessary calculations, it can be found that the equations of motion of the satellite reduce to the form (1.9) with the
functions

From the equations

(3.7)

we find that, when a moment M0
3(t) = C(t)	̇0

3(t) acts, the satellite can execute the specified generalized steady motion

(3.8)

Besides this motion, in the case of this moment there is a whole family of generalized steady motions differing from (3.8) by the constant
term 	3 = 	0

3(t) + c.
For the motion (3.8), the function

is positive-definite with respect to x = (� − �/2), y = (
 − �) if the conditions

(3.9)

are satisfied. For the same conditions, if |x| + |y| ≥ 
 > 0, then

(3.10)

Using Theorem 1, we find that the moments (3.6) when M3 = M0
3(t) ensure asymptotic stability with respect to �̇, 
̇, x, y and stability with

respect to �̇ of the specified rotational motion of the satellite for any changes in its parameters A(t), C(t), k(t) which satisfy inequalities (3.9)
and the relations

(3.11)

For these same conditions, the moments (3.6) with the value

ensure the total uniform asymptotic stability of the motion (3.8).
When M3(t) ≡ 0 and 	3(t) = p0(t) ≡ 0, Eqs (3.7) have the solution

A relative equilibrium position of the satellite with the axis of symmetry Ox3 directed along an orbit that is tangential to the plane:

(3.12)
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corresponds to this. The function W(t, �, 
) when p0(t) = 0 is positive-definite with respect to x = (� − �/2) and y = (
 − �/2) if the condition

is satisfied. With the same condition, when account is taken of the inequality A(t) ≥ A0 > 0, conditions (3.10) are satisfied.
Suppose the changes in the parameters A(t), C(t), k(t) satisfy the inequalities

Then, applying Theorem 1, we obtain that the moments (3.6) when M3 ≡ 0 ensure uniform stability of the motion (3.12) with respect
to �̇, 
̇, x, y, 	3 and, at the same time, each perturbed motion in which 	3(t) ≡ 0, indefinitely approaches the equilibrium position (3.12)
when t → + ∞. If M3 = �(t)	3, the motion (3.12) is uniformly asymptotically stable.

When M3 ≡ 0 and, correspondingly, p = 0, the satellite has a position of relative equilibrium in which its axis of symmetry is directed
onto the attracting centre. As previously, it may be found that, in the case of conditions relating to the parameters A(t), C(t), k(t) in the form
of the inequalities

the moment (3.6), when M3 = �(t)	3, ensures the uniform asymptotic stability of this equilibrium position.
According to the technique of using sign-definite Lyapunov functions in stability and stabilization problems presented earlier,10,12 the

complete stabilizability of the translational-rotational motion of a satellite follows from the uniform asymptotic stability of the motion of
the centre of mass of the satellite in a circular orbit and the uniform asymptotic stability of the rotational motion of the satellite about its
centre of mass with the assumption that it moves in a circular orbit. It then follows that the reactive forces

forming the moment with respect to the centre of mass

ensure, in the case of conditions (3.9) and (3.11), total stabilization of the translational-rotational motion of the satellite

in which the centre of mass of the satellite moves in a circular orbit and the satellite rotates with a specified angular velocity about an axis
of symmetry which is perpendicular to the orbital plane. Analogous assertions also hold in the problem of stabilizing the motion in which
the axis of symmetry of the satellite is directed along the radius vector of the centre of mass and along a tangent to a circular orbit.

Note that a number of the results obtained in this paper are also new for systems with constant masses.
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